Math 254-2 Exam 3 Solutions

1. Carefully state the definition of "dimension", in the context of this course. Give two examples: a four-dimensional vector space, and an infinite-dimensional vector space.

The dimension of a vector space is the number of vectors in any basis. The most familiar four-dimensional vector space is, of course \mathbb{R}^{4}; but also we have seen $\mathbb{R}_{3}[t]$, the set of polynomials of degree of at most three. $\mathbb{R}[t]$, the set of all polynomials, is infinite dimensional, as is C^{0}, the set of continuous functions.
2. Suppose that A, B are square, $n \times n$, invertible matrices. Prove that $A B$ is invertible, and that $(A B)^{-1}=B^{-1} A^{-1}$.

We calculate $(A B)\left(B^{-1} A^{-1}\right)=A\left(B B^{-1}\right) A^{-1}=A I A^{-1}=A A^{-1}=I$. Hence $A B$ is invertible, and its inverse is $\left(B^{-1} A^{-1}\right)$.

The remaining problems all concern the following matrix: $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$
3. Be sure to justify your answers to the following questions.
(a) Is A diagonal?
(b) Is A triangular?
(c) Is A orthogonal?
(d) Calculate $\operatorname{tr}(A)$.
(e) Calculate A^{T}.
(a) Diagonal matrices are zero for all entries $(B)_{i j}$ with $i \neq j$. A has four nonzero entries off the diagonal, hence is NOT diagonal.
(b) Triangular matrices come in two types: upper triangular matrices are zero for $(B)_{i j}$ with $i>j$; lower triangular matrices are zero for $(B)_{i j}$ with $i<j$. A is not of either type, since $(A)_{13}=3$ and $(A)_{31}=1$, hence is NOT triangular.
(c) Orthogonal matrices B satisfy $B B^{T}=I$; however $A A^{T}=\left[\begin{array}{ccc}14 & 6 & 1 \\ 6 & 17 & 4 \\ 1 & 4 & 1\end{array}\right] \neq I$. Hence A is NOT orthogonal.
(d) The trace of a matrix is the sum of its diagonal entries, in this case $1+1+0=2$.
(e) The transpose of a matrix is calculated by swapping $(B)_{i j}$ with $(B)_{j i}$; hence $A^{T}=\left[\begin{array}{ccc}1 & 4 & 1 \\ 2 & 1 & 0 \\ 3 & 0 & 0\end{array}\right]$.
4. Find a symmetric matrix B and skew-symmetric matrix C such that $A=B+C$.

Theorem 3.2 tells us how to do this; we take $B=\left(A+A^{T}\right) / 2, C=\left(A-A^{T}\right) / 2$. $B=\left[\begin{array}{llll}1 & 3 & 2 \\ 3 & 1 & 0 \\ 2 & 0 & 0\end{array}\right], C=\left[\begin{array}{ccc}0 & -1 & 1 \\ 1 & 0 & 0 \\ -1 & 0 & 0\end{array}\right]$.
5. Is A invertible? If so, find A^{-1}.

We begin with $[A \mid I]$ and perform elementary row operations to put the first part into row canonical form. $\left[\begin{array}{llllll}1 & 2 & 3 & 1 & 0 \\ 4 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1\end{array}\right] \xrightarrow{-R_{3}+R_{1} \rightarrow R_{1},-4 R_{3}+R_{2} \rightarrow R_{2}}\left[\begin{array}{cccccc}0 & 2 & 1 & 0 & -1 \\ 0 & 1 & 0 & 1 & -4 \\ 1 & 0 & 0 & -4 \\ 1 & 0 & -2 R_{2}+R_{1} \rightarrow R_{1} \\ \hline\end{array}\right.$ $\left[\begin{array}{ccccc}0 & 0 & 3 & 1 & -2 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & -4 \\ 1 & 0 & 0 & 1\end{array}\right] \xrightarrow{1 / 3 R_{2} \rightarrow R_{2}}\left[\begin{array}{cccccc}0 & 0 & 1 & 1 / 3 & -2 / 3 \\ 0 & 1 & 0 & 7 / 3 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ \hline\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{3}}\left[\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & -4 \\ 0 & 0 & 1 & 1 / 3 & -2 / 3 & 7 / 3\end{array}\right]$.
Because this was successful, A is invertible; further, $A^{-1}=\left[\begin{array}{ccc}0 & 0 & 1 \\ 0 & 1 & -4 \\ 1 / 3 & -2 / 3 & 7 / 3\end{array}\right]$.

